The Notion of V-r-Invexity in Differentiable Multiobjective Programming

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE NOTION OF V -r-INVEXITY IN DIFFERENTIABLE MULTIOBJECTIVE PROGRAMMING

In this paper, a generalization of convexity, namely V -rinvexity, is considered in the case of nonlinear multiobjective programming problems where the functions involved are differentiable. The assumptions on Pareto solutions are relaxed by means of V -r-invex functions. Also some duality results are obtained for such optimization problems.

متن کامل

Nondifferentiable multiobjective programming under generalized dI-invexity

In this paper, we are concerned with a nondifferentiable multiobjective programming problem with inequality constraints. We introduce four new classes of generalized convex functions by combining the concepts of weak strictly pseudoinvex, strong pseudoinvex, weak quasi invex, weak pseudoinvex and strong quasi invex functions in Aghezzaf and Hachimi [Numer. Funct. Anal. Optim. 22 (2001) 775], d-...

متن کامل

Semi-infinite Multiobjective Programming with Generalized Invexity

Motivated by important applications, the theory of mathematical programming has been extended to the case of infinitely many restrictions. At the same time, this theory knew remarcable developments since invexity and its further generalizations have been introduced as substitute of convexity. Here, we consider the multiobjective programming with a set of restrictions indexed in a compact. We ob...

متن کامل

Nonsmooth Multiobjective Fractional Programming with Generalized Invexity

In this paper, we consider nonsmooth multiobjective fractional programming problems involving locally Lipschitz functions. We introduce the property of generalized invexity for fractional function. We present necessary optimality conditions, sufficient optimality conditions and duality relations for nonsmooth multiobjective fractional programming problems, which is for a weakly efficient soluti...

متن کامل

Weak Pseudo-Invexity and Characterizations of Solutions in Multiobjective Programming

In this paper, we study Fritz John type optimality for nonlinear multiobjective programming problems under new classes of generalized invex vector functions. Relationships between these classes of vector functions are established by giving several examples. Furthermore, optimality conditions and characterizations of efficient and weakly efficient solutions are obtained under weak pseudoinvexity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Applied Analysis

سال: 2005

ISSN: 1425-6908,1869-6082

DOI: 10.1515/jaa.2005.63